Extensions 1→N→G→Q→1 with N=D16 and Q=C22

Direct product G=NxQ with N=D16 and Q=C22
dρLabelID
C22xD1664C2^2xD16128,2140

Semidirect products G=N:Q with N=D16 and Q=C22
extensionφ:Q→Out NdρLabelID
D16:1C22 = C2xD32φ: C22/C2C2 ⊆ Out D1664D16:1C2^2128,991
D16:2C22 = C32:C22φ: C22/C2C2 ⊆ Out D16324+D16:2C2^2128,995
D16:3C22 = C2xC16:C22φ: C22/C2C2 ⊆ Out D1632D16:3C2^2128,2144
D16:4C22 = D16:C22φ: C22/C2C2 ⊆ Out D16324D16:4C2^2128,2146
D16:5C22 = D4oD16φ: C22/C2C2 ⊆ Out D16324+D16:5C2^2128,2147
D16:6C22 = D4oSD32φ: C22/C2C2 ⊆ Out D16324D16:6C2^2128,2148
D16:7C22 = C2xC4oD16φ: trivial image64D16:7C2^2128,2143

Non-split extensions G=N.Q with N=D16 and Q=C22
extensionφ:Q→Out NdρLabelID
D16.1C22 = C2xSD64φ: C22/C2C2 ⊆ Out D1664D16.1C2^2128,992
D16.2C22 = C4oD32φ: C22/C2C2 ⊆ Out D16642D16.2C2^2128,994
D16.3C22 = Q64:C2φ: C22/C2C2 ⊆ Out D16644-D16.3C2^2128,996
D16.4C22 = Q8oD16φ: trivial image644-D16.4C2^2128,2149

׿
x
:
Z
F
o
wr
Q
<